119 research outputs found

    Towards a merged satellite and in situ fluorescence ocean chlorophyll product

    Get PDF
    Understanding the ocean carbon cycle requires a precise assessment of phytoplankton biomass in the oceans. In terms of numbers of observations, satellite data represent the largest available data set. However, as they are limited to surface waters, they have to be merged with in situ observations. Amongst the in situ data, fluorescence profiles constitute the greatest data set available, because fluorometers have operated routinely on oceanographic cruises since the 1970s. Nevertheless, fluorescence is only a proxy of the total chlorophyll <i>a</i> concentration and a data calibration is required. Calibration issues are, however, sources of uncertainty, and they have prevented a systematic and wide range exploitation of the fluorescence data set. In particular, very few attempts to standardize the fluorescence databases have been made. Consequently, merged estimations with other data sources (e.g. satellite) are lacking. <br><br> We propose a merging method to fill this gap. It consists firstly in adjusting the fluorescence profile to impose a zero chlorophyll <i>a</i> concentration at depth. Secondly, each point of the fluorescence profile is then multiplied by a correction coefficient, which forces the chlorophyll <i>a</i> integrated content measured on the fluorescence profile to be consistent with the concomitant ocean colour observation. The method is close to the approach proposed by Boss et al. (2008) to correct fluorescence data of a profiling float, although important differences do exist. To develop and test our approach, in situ data from three open ocean stations (BATS, HOT and DYFAMED) were used. Comparison of the so-called "satellite-corrected" fluorescence profiles with concomitant bottle-derived estimations of chlorophyll <i>a</i> concentration was performed to evaluate the final error (estimated at 31%). Comparison with the Boss et al. (2008) method, using a subset of the DYFAMED data set, demonstrated that the methods have similar accuracy. The method was applied to two different data sets to demonstrate its utility. Using fluorescence profiles at BATS, we show that the integration of "satellite-corrected" fluorescence profiles in chlorophyll <i>a</i> climatologies could improve both the statistical relevance of chlorophyll <i>a</i> averages and the vertical structure of the chlorophyll <i>a</i> field. We also show that our method could be efficiently used to process, within near-real time, profiles obtained by a fluorometer deployed on autonomous platforms, in our case a bio-optical profiling float. The application of the proposed method should provide a first step towards the generation of a merged satellite/fluorescence chlorophyll <i>a</i> product, as the "satellite-corrected" profiles should then be consistent with satellite observations. Improved climatologies with more consistent satellite and in situ data are likely to enhance the performance of present biogeochemical models

    Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter

    Get PDF
    In situ chlorophyll fluorometers have been widely employed for more than half a century, and to date, it still remains the most used instrument to estimate chlorophyll-a concentration in the field, especially for measurements onboard autonomous observation platforms, e.g., Bio-Argo floats and gliders. However, in deep waters (> 300 m) of some specific regions, e.g., subtropical gyres and the Black Sea, the chlorophyll fluorescence profiles frequently reveal “deep sea red fluorescence” features. In line with previous studies and through the analysis of a large data set (cruise transect in the South East Pacific and data acquired by 82 Bio- Argo floats), we show that the fluorescence signal measured by a humic-like DOM fluorometer is highly correlated to the “deep sea red fluorescence.” Both fluorescence signals are indeed linearly related in deep waters. To remove the contribution of non-algal organic matter from chlorophyll fluorescence profiles, we introduce a new correction. Rather that removing a constant value (generally the deepest chlorophyll a fluorescence value from the profile, i.e., so-called “deep-offset correction”), we propose a correction method which relies on DOM fluorometry and on its variation with depth. This new method is validated with chlorophyll concentration extracted from water samples and further applied on the Bio-Argo float data set. More generally, we discuss the potential of the proposed method to become a standard and routine procedure in quality-control and correction of chlorophyll a fluorescence originating from Bio-Argo network

    Assessing the potential benefits of the geostationary vantage point for generating daily chlorophyll-a Maps in the Baltic Sea

    Get PDF
    Currently, observations from low-Earth orbit (LEO) ocean color sensors represent one of the most used tools to study surface optical and biogeochemical properties of the ocean. LEO observations are available at daily temporal resolution, and are often combined into weekly, monthly, seasonal, and annual averages in order to obtain sufficient spatial coverage. Indeed, daily satellite maps of the main oceanic variables (e.g., surface phytoplankton chlorophyll-a) generally have many data gaps, mainly due to clouds, which can be filled using either Optimal Interpolation or the Empirical Orthogonal Functions approach. Such interpolations, however, may introduce large uncertainties in the final product. Here, our goal is to quantify the potential benefits of having high-temporal resolution observations from a geostationary (GEO) ocean color sensor to reduce interpolation errors in the reconstructed hourly and daily chlorophyll-a products. To this aim, we used modeled chlorophyll-a fields from the Copernicus Marine Environment Monitoring Service's (CMEMS) Baltic Monitoring and Forecasting Centre (BAL MFC) and satellite cloud observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor (on board the geostationary satellite METEOSAT). The sampling of a GEO was thus simulated by combining the hourly chlorophyll fields and clouds masks, then hourly and daily chlorophyll-a products were generated after interpolation from neighboring valid data using the Multi-Channel Singular Spectral Analysis (M-SSA). Two cases are discussed: (i) A reconstruction based on the typical sampling of a LEO and, (ii) a simulation of a GEO sampling with hourly observations. The results show that the root mean square and interpolation bias errors are significantly reduced using hourly observations

    Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design

    Get PDF
    Numerical models of ocean biogeochemistry are becoming the major tools used to detect and predict the impact of climate change on marine resources and to monitor ocean health. However, with the continuous improvement of model structure and spatial resolution, incorporation of these additional degrees of freedom into fidelity assessment has become increasingly challenging. Here, we propose a new method to provide information on the model predictive skill in a concise way. The method is based on the conjoint use of a k-means clustering technique, assessment metrics, and Biogeochemical-Argo (BGC-Argo) observations. The k-means algorithm and the assessment metrics reduce the number of model data points to be evaluated. The metrics evaluate either the model state accuracy or the skill of the model with respect to capturing emergent properties, such as the deep chlorophyll maximums and oxygen minimum zones. The use of BGC-Argo observations as the sole evaluation data set ensures the accuracy of the data, as it is a homogenous data set with strict sampling methodologies and data quality control procedures. The method is applied to the Global Ocean Biogeochemistry Analysis and Forecast system of the Copernicus Marine Service. The model performance is evaluated using the model efficiency statistical score, which compares the model–observation misfit with the variability in the observations and, thus, objectively quantifies whether the model outperforms the BGC-Argo climatology. We show that, overall, the model surpasses the BGC-Argo climatology in predicting pH, dissolved inorganic carbon, alkalinity, oxygen, nitrate, and phosphate in the mesopelagic and the mixed layers as well as silicate in the mesopelagic layer. However, there are still areas for improvement with respect to reducing the model–data misfit for certain variables such as silicate, pH, and the partial pressure of CO2 in the mixed layer as well as chlorophyll-a-related, oxygen-minimum-zone-related, and particulate-organic-carbon-related metrics. The method proposed here can also aid in refining the design of the BGC-Argo network, in particular regarding the regions in which BGC-Argo observations should be enhanced to improve the model accuracy via the assimilation of BGC-Argo data or process-oriented assessment studies. We strongly recommend increasing the number of observations in the Arctic region while maintaining the existing high-density of observations in the Southern Oceans. The model error in these regions is only slightly less than the variability observed in BGC-Argo measurements. Our study illustrates how the synergic use of modeling and BGC-Argo data can both provide information about the performance of models and improve the design of observing systems.</p

    Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors

    Get PDF
    Chlorophyll fluorometers provide the largest in situ global data set for estimating phytoplankton biomass because of their ease of use, size, power consumption, and relatively low price. While in situ chlorophyll a (Chl) fluorescence is proxy for Chl a concentration, and hence phytoplankton biomass, there exist large natural variations in the relationship between in situ fluorescence and extracted Chl a concentration. Despite this large natural variability, we present here a global validation data set for the WET Labs Environmental Characterization Optics (ECO) series chlorophyll fluorometers that suggests a factor of 2 overestimation in the factory calibrated Chl a estimates for this specific manufacturer and series of sensors. We base these results on paired High Pressure Liquid Chromatography (HPLC) and in situ fluorescence match ups for which non-photochemically quenched fluorescence observations were removed. Additionally, we examined matches between the factory-calibrated in situ fluorescence and estimates of chlorophyll concentration determined from in situ radiometry, absorption line height, NASA’s standard ocean color algorithm as well as laboratory calibrations with phytoplankton monocultures spanning diverse species that support the factor of 2 bias. We therefore recommend the factor of 2 global bias correction be applied for the WET Labs ECO sensors, at the user level, to improve the global accuracy of chlorophyll concentration estimates and products derived from them. We recommend that other fluorometer makes and models should likewise undergo global analyses to identify potential bias in factory calibration

    Calibration procedures and first data set of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags

    Get PDF
    In-situ observation of the marine environment has traditionally relied on ship-based platforms. The obvious consequence is that physical and biogeochemical properties have been dramatically undersampled, especially in the remote Southern Ocean (SO). The difficulty in obtaining in situ data represents the major limitations to our understanding, and interpretation of the coupling between physical forcing and the biogeochemical response. Southern elephant seals (Mirounga leonina) equipped with a new generation of oceanographic sensors can measure ocean structure in regions and seasons rarely observed with traditional oceanographic platforms. Over the last few years, seals have allowed for a considerable increase in temperature and salinity profiles from the SO. However we were still lacking information on the spatio-temporal variation of phytoplankton concentration. This information is critical to assess how the biological productivity of the SO, with direct consequences on the amount of CO2 "fixed" by the biological pump, will respond to global warming. In this research program, we use an innovative sampling fluorescence approach to quantify phytoplankton concentration at sea. For the first time, a low energy consumption fluorometer was added to Argos CTD-SRDL tags, and these novel instruments were deployed on 27 southern elephant seals between 25 December 2007 and the 4 February 2011. As many as 3388 fluorescence profiles associated with temperature and salinity measurements were thereby collected from a vast sector of the Southern Indian Ocean. This paper address the calibration issue of the fluorometer before being deployed on elephant seals and present the first results obtained for the Indian Sector of the Southern Ocean.This in situ system is implemented in synergy with satellite ocean colour radiometry. Satellite-derived data is limited to the surface layer and is restricted over the SO by extensive cloud cover. However, with the addition of these new tags, we're able to assess the 3 dimension distribution of phytoplankton concentration by foraging southern elephant seals. This approach reveals that for the Indian sector of the SO, the surface chlorophyll a (chl a) concentrations provided by MODIS were underestimated by a factor of the order of 2–3 compared to in situ measurements. The scientific outcomes of this program include an improved understanding of both the present state and variability in ocean biology, and the accompanying biogeochemistry, as well as the delivery of real-time and open-access data to scientists

    A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient

    Get PDF
    The present study proposes a novel method that merges satellite ocean color bio-optical products with Argo temperature-salinity profiles to infer the vertical distribution of the particulate backscattering coefficient (bbp). This neural network-based method (SOCA-BBP for Satellite Ocean-Color merged with Argo data to infer the vertical distribution of the Particulate Backscattering coefficient) uses three main input components: (1) satellite-based surface estimates of bbp and chlorophyll a concentration matched up in space and time with (2) depth-resolved physical properties derived from temperature-salinity profiles measured by Argo profiling floats and (3) the day of the year of the considered satellite-Argo matchup. The neural network is trained and validated using a database including 4725 simultaneous profiles of temperature-salinity and bio-optical properties collected by Bio-Argo floats, with concomitant satellite-derived products. The Bio-Argo profiles are representative of the global open-ocean in terms of oceanographic conditions, making the proposed method applicable to most open-ocean environments. SOCA-BBP is validated using 20% of the entire database (global error of 21%). We present additional validation results based on two other independent data sets acquired (1) by four Bio-Argo floats deployed in major oceanic basins, not represented in the database used to train the method; and (2) during an AMT (Atlantic Meridional Transect) field cruise in 2009. These validation tests based on two fully independent data sets indicate the robustness of the predicted vertical distribution of bbp. To illustrate the potential of the method, we merged monthly climatological Argo profiles with ocean color products to produce a depth-resolved climatology of bbp for the global ocean

    Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications

    Get PDF
    Since 2012, an array of 105 Biogeochemical-Argo (BGC-Argo) floats has been deployed across the world’s oceans to assist in filling observational gaps that are required for characterizing open-ocean environments. Profiles of biogeochemical (chlorophyll and dissolved organic matter) and optical (single-wavelength particulate optical backscattering, downward irradiance at three wavelengths, and photosynthetically available radiation) variables are collected in the upper 1000m every 1 to 10 days. The database of 9837 vertical profiles collected up to January 2016 is presented and its spatial and temporal coverage is discussed. Each variable is quality controlled with specifically developed procedures and its time series is quality-assessed to identify issues related to biofouling and/or instrument drift. A second database of 5748 profile-derived products within the first optical depth (i.e., the layer of interest for satellite remote sensing) is also presented and its spatiotemporal distribution discussed. This database, devoted to field and remote ocean color applications, includes diffuse attenuation coefficients for downward irradiance at three narrow wavebands and one broad waveband (photosynthetically available radiation), calibrated chlorophyll and fluorescent dissolved organic matter concentrations, and single wavelength particulate optical backscattering. To demonstrate the applicability of these databases, data within the first optical depth are compared with previously established bio-optical models and used to validate remotely derived bio-optical products. The quality-controlled databases are publicly available from the SEANOE (SEA scieNtific Open data Edition) publisher at https://doi.org/10.17882/49388 and https://doi.org/10.17882/47142 for vertical profiles and products within the first optical depth, respectively

    Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007-2013 Period

    Get PDF
    We present here a unique oceanographic and meteorological data set focus on the deep convection processes. Our results are essentially based on in situ data (mooring, research vessel, glider, and profiling float) collected from a multiplatform and integrated monitoring system (MOOSE: Mediterranean Ocean Observing System on Environment), which monitored continuously the northwestern Mediterranean Sea since 2007, and in particular high‐frequency potential temperature, salinity, and current measurements from the mooring LION located within the convection region. From 2009 to 2013, the mixed layer depth reaches the seabed, at a depth of 2330m, in February. Then, the violent vertical mixing of the whole water column lasts between 9 and 12 days setting up the characteristics of the newly formed deep water. Each deep convection winter formed a new warmer and saltier “vintage” of deep water. These sudden inputs of salt and heat in the deep ocean are responsible for trends in salinity (3.3 ± 0.2 × 10−3/yr) and potential temperature (3.2 ± 0.5 × 10−3 C/yr) observed from 2009 to 2013 for the 600–2300 m layer. For the first time, the overlapping of the three “phases” of deep convection can be observed, with secondary vertical mixing events (2–4 days) after the beginning of the restratification phase, and the restratification/spreading phase still active at the beginning of the following deep convection event
    • 

    corecore